simulate_clusters.Rd
Based on an existing background image, simulate clusters of cells where the same type of cells aggregate. The default values for the arguments give an example of cluster simulation which enable an automatic simulation of clusters without the specification of any argument.
simulate_clusters(
bg_sample = bg1,
n_clusters = 2,
bg_type = "Others",
cluster_properties = list(C1 = list(name_of_cluster_cell = "Tumour", size = 300, shape
= "Oval", centre_loc = data.frame(x = 500, y = 500), infiltration_types =
c("Immune1", "Others"), infiltration_proportions = c(0.1, 0.05)), C2 =
list(name_of_cluster_cell = "Immune1", size = 500, shape = "Irregular", centre_loc =
data.frame(x = 1500, y = 500), infiltration_types = c("Immune2", "Others"),
infiltration_proportions = c(0.1, 0.05))),
plot_image = TRUE,
plot_categories = NULL,
plot_colours = NULL
)
(OPTIONAL) A data frame or SpatialExperiment
class object
with locations of points representing background cells. Further cell types
will be simulated based on this background sample. The data.frame or the
spatialCoords()
of the SPE object should have colnames including
"Cell.X.Positions" and "Cell.Y.Positions". By default use the internal
bg1
background image.
Numeric. Number of clusters. This must match the
length(cluster_properties)
.
(OPTIONAL) String. The name of the background cell type if the background sample does not have a "Cell.Type" column. By default is "Others".
List of properties of the clusters. See examples for the format of this arg.
Boolean. Whether the simulated image is plotted.
String Vector specifying the order of the cell categories to be plotted. Default is NULL - the cell categories under the "Cell.Type" column would be used for plotting.
String Vector specifying the order of the colours that
correspond to the plot_categories
arg. Default is NULL - the predefined
colour vector would be used for plotting.
A data.frame of the simulated image
simulate_background_cells
for all cell simulation,
simulate_mixing
for mixed background simulation,
simulate_immune_rings
/simulate_double_rings
for
immune ring simulation, and simulate_stripes
for vessel
simulation.
Other simulate pattern functions:
simulate_background_cells()
,
simulate_double_rings()
,
simulate_immune_rings()
,
simulate_mixing()
,
simulate_stripes()
set.seed(610)
cluster_image <- simulate_clusters(bg_sample = bg1,
n_clusters=2, cluster_properties=list(C1=list(name_of_cluster_cell="Tumour",
size=300, shape="Oval", centre_loc=data.frame("x"=500, "y"=500),
infiltration_types=c("Immune1", "Others"), infiltration_proportions=c(0.1, 0.05)),
C2=list(name_of_cluster_cell="Immune1", size=500, shape="Irregular",
centre_loc=data.frame("x"=1500,"y"=500), infiltration_types=c("Immune2", "Others"),
infiltration_proportions=c(0.1, 0.05))))